Primitive high-K ankaramitic magmas in the Eastern Srednogorie continental arc: comparison between melt inclusion geochemistry and bulk-rock compositions

Peter Marchev – Geological Institute of Bulgarian Academy of Scieneces

Svetoslav Georgiev, Zoltán Zajačz, Albrecht von Quadt - Institute of isotope geology and mineral resources, ETH Zurich

Simone Tomassini, Piero Manetti – Department of Earth Sciences, University of Florence

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eastern Srednogorie in ABTS belt

ESZ - the most interesting part of the entire ABTS belt from magmatic point of view

Large distribution of mafic to ultramafic rocks

Strong variation in K

 Mafic magmas - prime goal of any petrological study in the island arcs

<u>Task</u>

 Focus - ankaramitic MI in a cumulitic rock and the ankaramitic lavas and dikes from the Central part of the ESZ

Aims :

- Through study of the composition of MI and lavas to prove the existence of the ankaramitic magma

- To put constrains on the origin of the Eastern Srednogorie ankaramites.

What is ankaramite?

High MgO, CaO and CaO/Al₂O₃ >1

 Two groups: a silca-poor, hy –normative group and an alkali-rich, nenormative group (Sciano et al., 2000; Kogiso and Hirschman, 2001)

- 1-st group mid-ocean ridges, back-arcs, and ocean islands
- 2-nd group arc environment

Analytical techniques

 Major and trace elements of bulc rocks – XRF University of Florence and Zurich and LA-ICP/MS in glass from XRF in Zurich

 Major elements of minerals and MIs - JEOL 870 Superprobe at the University of Florence andat the University of Zurich

 Trace elements of MIs - LA ICP/MS in the laboratories at the University of ETH, Zurich and University of Perugia

Sr and Pb Isotopic data - at the University of Zurich

Sample location

- "Picrite" Dragantsi
- Ankaramites

Cumulitic lava "picrite" & MI

Petrography and mineral chemistry

"Picrite"-strongly porphyritic-60-70% phenocrysts- OI, Cpx, Sp

Gm – chloritised glass, Bio, KFs, Pl, Ap

Phenocrysts

OI=Fo₉₂₋₈₅; CaO - 0.53-0.40 wt. %; NiO - 0.1-0.12 wt.%

Cpx- unzoned core (Mg#-89-86, oscilatory outer zone – Mg #81-69

Sp - Cr# 74-80; micropheno Cr# 65-67

T, fO₂ & H₂O content

Spinel-olivine geothermometer of Ballhaus et al. (1991), temperatures scatted between 900 and 1205 °C. The highest temperatures are likely to be close to the liquidus temperature of the magma, whereas remainder reflect postenrapment re-equilibration

Oxygen fugacity using the oxygen barometer of the same authors is between +1 and +2 log units above FMQ buffer

 H_2O content calculated by difference to 100 from the EPMA ~3 wt. %, supported by the elevated SiO₂/MgO+FeO>2.3 T-1205-900 $fO_2 = +1$ to +2log units above QFM $H_2O\sim3wt.\%$

Cumulitic rock

Major and trace element composition

- "picrite" in accord with their cumulitic nature: low silica (SiO₂~44 wt%), high MgO (24.4 wt%) and FeO (11.2 wt.%); very low Na₂O (0.14 wt.%) and K₂O (0.29 wt. %). Mg# of this rock 79.6, CaO/Al₂O₃ ratio is 1.78
- high Ni (531 ppm) and Cr (1900 ppm); low LILE
- more primitive than the composition of MIs

SiO_{2} TiO_{2} $AI_{2}O_{3}$ $Fe_{2}O_{3}$ FeO MnO MgO CaO $Na_{2}O$ $K_{2}O$	43.91 0.26 4.34 6.69 5.12 0.22 24.39 7.72 0.14 0.29
P_2O_5	0.13
LÕI	6.79
CaO/A Mg#	II ₂ O ₃ 1.78 79.6

106 V Cr 1900 Co 97 Ni 531 Rb 11 Sr 87 Y 7 Ba 69

Melt Inclusions

- both olivine and clinopyroxene
- rounded, ellipsoidal, negative crystal forms
- size few microns to 40 μm
- two phase (glass and shrinkage bubles) ± spinel
- glass colourless

Melt inclusion composition

Major elements

	EPMA	LA-ICP/M	S XRF
	SG12	SG12	Bulc rock
SiO ₂	51-52	47-51	43.91
TiO ₂	~1	0.3-0.6	0.26
$Al_2\bar{O}_3$	~16.0	9.4-11.6	4.34
FeO	~3.1	7.5-10.7	11.21
MnO	~0.1	0.1-0.2	0.22
MgO	~1.0	7.5-10.8	24.39
CaO	~17.2	13.5-15.0	7.72
Na ₂ O	~2.6	1.5-2.1	0.14
K ₂ Ō	~3.4	2.0-4.0	0.29
P ₂ O ₅	~0.7		0.13

• LA analyses show lower SiO_2 , : AI_2O_3 , CaO and alkaline elements and higher MgO and FeO

• Lower FeO and MgO of the EPMA - caused by post-entrapment modification, due to crystallization of Fe-rich olivine onto the walls of MI and diffusion of Fe into host OI.

high CaO/Al₂O₃ > 1 –ankaramites; high K₂O/Na₂O>1; shoshonitic ankaramites

BS image

Melt inclusion composition Trace elements

- OI- and Cpx-hosted MIs show strong subduction-related signatures with pronounced Nb-Ta throg; Zr, Hf and Ti negative anomalies and K, Pb, Sr spikes
- Enrichment in LILE and LREE relative to HFSE and HREE

• Flat HREE

Ankaramitic lavas

Petrography

Strongly porphyritic: phenocrysts of OI, Cpx, rare Sp

Gms- Cpx and analcite microlites in San mesostasis

OI -- always altered

Cpx – strongly zoned or sieved; corediopside - Mg-# 87- 82; outer zone -Ti augite Mg # to 66

Ankaramitic lava flows and dykes

Major and trace elements

Ne-normative; Mg# 63.4-69.4

High-CaO -10.3 -13.4; Al₂O₃ 11.0-12.2

N-MORB normalized patterns and chondrite normalized patterns of lavas – display strong resemblance to MI but narrower variations

Ankaramitic lavas Sr and Pb Isotopic compositions

• The picrite hosting MIs and an ankaramite lava have indistinguishable Sr isotopic values and are **among the least radiogenic Eastern Srednogorie rocks**

• Pb isotopes of the picrite are among the least radiogenic compared to the other Eastern Srednogorie rocks

0.710

Discussion

In the following discussion we will address two issues :

- Do the ankaramiric melts exist?
- Where they have been generated?

Do the ankaramitic melts exist?

The existence of ankaramitic magma - debate.

 the ankaramites - a variety of picrite enriched in Ca by accumulation of clinopyroxene.

 – findings of Ne-normative ankaramitic MI in island-arc rocks - designated as a distinctive magma type (Sciano et al., 2000).

- doubt on the ankaramitic characteristics of the MI melt inclusions:

– high-Ca content and CaO/Al₂O₃ ratio in high-Mg olivines - the result of diffusion of Ca through the olivine lattice or as the result of local melting reactions.

Arguments in favor of the primary high-Ca melt in the ESZ

Two lines of evidence:

• Generally high CaO contents of the OI - (0.53-0.39 wt. %); much higher than those in typical subduction-related magmas - 0.25-0.15 wt. %

• Diffusion Fe and Ca from the MI into host OI

Diffusion phenomena

BSE image

High-resolution profiles (2-3 μ m steps) from MI located into the rim of an OI crystal (Fo $_{85}$)

Series2 14 13 10 20 30 40 50 • Series2

Distance from center MI (microns)

Diffusion phenomena

High-resolution profiles (2-3 μ m steps) from MI located into OI core (Fo₉₀)

Conclusion: no diffusion of CaO from the hosting melt; there is a diffusion of Ca from the MI into the host OI

Where the ankaramites have been generated?

• Flat HREE distribution - generation in a non-garnet lithospheric source

• This is confirmed by the isotopic difference with the asthenospheric-derived WP basalts and EAR

• Termodynamic calculations - Nenormative Ca-rich melts melts can not be produced by partial melting of common lherzolite mantle compositions

• Lower crustal and upper mantle pyroxenites (Sciano et al., 2000)

• Melting experimental work with variable Ca-rich pyroxene + olivine + amphibole assemblages at 0.5-1 GPa and temperatures of 1175-1350 oC (Medard et al., 2 006)

• Problems – Low Mg/Fe ratio of the melts and low Fo content of OI; high TiO₂

May be in metasomatised mantle source (Cpx, OI +Amph & Phi !!!

Conclusions

- Ne-normative ankaramites are the most primitive magmas in the Yambol subzone of the Eastern Srednogorie zone
- Diffusion profiles around the MIs suggest that the high-Ca content is a primary feature of the ankaramitic magma and not the result of accumulation of Cpx
- Flat HREE patterns of the ankaramites suggest a derivation in a nongarnet lithospheric source
- Pb isotope differences between the WP alkaline basalts and LVC and ankaramites exclude contribution from the asthenospheric reservoirs
- Remelting of Ca-rich pyroxene + olivine + amphibole cumulitic assemblages is slightly possible mechanism for the generation of the ankaramites

Thank you !